
HP C V7.3 for OpenVMS Integrity
Servers
Release Notes

July 23, 2007

© Copyright 2007 Hewlett-Packard Company

ii

Contents

1 Introduction . 1
2 Installation . 1
2.1 Multiple Version Support . 3
3 Major Differences from Native Alpha Compiler 5
3.1 #pragma linkage . 5
3.1.1 Register Name Mapping for #pragma linkage 5
3.1.1.1 Integer Register Mapping . 6
3.1.1.2 Floating-point Register Mapping 8
3.1.1.3 Diagnostics . 8
3.1.2 New #pragma linkage_<target> . 9
3.1.2.1 Register names for #pragma linkage_ia64 9
3.1.2.2 Register names for #pragma linkage_alpha 10
3.1.3 New keyword "standard_linkage" 10
3.2 Builtin Functions . 10
3.2.1 Alpha compatibility . 10
3.2.2 IA64 specific . 12
3.3 Changed Floating Point Defaults and Controls 15
3.3.1 I64 Default: /FLOAT=IEEE_FLOAT/IEEE=DENORM . . . 15
3.3.2 Semantics of /IEEE_MODE qualifier 15
3.4 Predefined Macros . 16
4 Restrictions when using V7.3 . 16
5 Enhancements, Changes, and Problems Corrected in V7.3 16
6 Enhancements, Changes, and Problems Corrected in Version

7.2 . 20
7 Known Problems in V7.3 . 23
8 Reporting Problems . 24

iii

1 Introduction
This document contains the release notes for HP C V7.3 for OpenVMS
Integrity Servers (I64), which is a native I64 image generating native I64
object modules. When installed, the operation and behavior of the compiler is
very similar to that of Compaq C V7.1 for OpenVMS Alpha.

The native HP C compiler in this kit identifies itself as:

HP C V7.3 for OpenVMS I64

Note

This kit does not provide any header files. All header files that were
provided by C compiler kits for previous versions of OpenVMS are now
supplied as part of the OpenVMS base system.

For additional information on the compiler, see also:

• HP C User’s Guide for OpenVMS Systems

• Enter the command HELP CC at the $ prompt.

For additional information about the HP C language and its supported library
routines, see also:

• HP C Language Reference Manual

• HP C Run-Time Library Reference Manual for OpenVMS Systems

2 Installation

To install HP C for OpenVMS I64 systems, set the default directory to a
writeable directory to allow the IVP to succeed. Then run the PRODUCT
INSTALL command, pointing to the kit location. For example:

$ SET DEFAULT SYS$MANAGER
$ PRODUCT INSTALL C/SOURCE=node::device:[kit_dir]

After installation, these C release notes will be available at:

1

SYS$HELP:CC.RELEASE_NOTES

SYS$HELP:CC_RELEASE_NOTES.PS

Here is a sample default installation log:

$ PRODUCT INSTALL C/SOURCE=DEVO$:[CC.KITTING]

The following product has been selected:
HP I64VMS C V7.1-155 Layered Product

Do you want to continue? [YES]

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP I64VMS C V7.1-155: HP C for OpenVMS Industry Standard

Copyright 2003 Hewlett-Packard Development Company, L.P.

This software product is sold by Hewlett-Packard Company

PAKs used: C

Do you want the defaults for all options? [YES]

Copyright 2004 Hewlett-Packard Development Company, L.P.

HP, the HP logo, Alpha and OpenVMS are trademarks of
Hewlett-Packard Development Company, L.P. in the U.S. and/or
other countries.

Confidential computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s
standard commercial license.

Do you want to review the options? [NO]

Execution phase starting ...

The following product will be installed to destination:
HP I64VMS C V7.1-155 DISK$ICXXC_SYS:[VMS$COMMON.]

The following product will be removed from destination:
HP I64VMS C V7.1-145 DISK$ICXXC_SYS:[VMS$COMMON.]

Portion done: 0%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
HP I64VMS C V7.1-155 Layered Product

The following product has been removed:
HP I64VMS C V7.1-145 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for HP I64VMS C V7.1-155 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully

2

HP I64VMS C V7.1-155: HP C for OpenVMS Industry Standard

The release notes are located in the file SYS$HELP:CC.RELEASE_NOTES

for the text form and SYS$HELP:CC_RELEASE_NOTES.PS for the postscript form.

2.1 Multiple Version Support
Version 7.3 adds optional support for having multiple versions of the C
compiler on your system. It works by appending an ident name to a previously
installed compiler and saving it alongside the new compiler from this kit.
Users on your system can then execute the sys$system:decc$set_version.com
and sys$system:decc$show_versions.com command procedures to select the
desired compiler for a given process and to view the list of available compiler
versions.

To set this up, have your system administrator run the installation procedure,
answering NO to the question about default options:

Do you want the defaults for all options? [YES] NO <RET>

Then answer YES to the question about making alternate compilers available:

Would you like to set up your system for running alternate versions of C? [NO] YES <RET>

Users can then execute the decc$set_version.com command procedure with an
argument to set up process default logicals that point to alternate compiler
versions. For more information on using decc$set_version.com and decc$show_
version.com see section: "Enhancements, Changes, and Problems Corrected in
V7.3".

Sample installation for multiple-version Support:

$ product install c /source=C$:[disk1.cpri.bvbv.bl50.saveset]

The following product has been selected:
HP I64VMS C V7.3-18 Layered Product

Do you want to continue? [YES] yes

Configuration phase starting ...

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP I64VMS C V7.3-18: HP C for OpenVMS Industry Standard

Copyright 2003, 2004-2007 Hewlett-Packard Development Company, L.P.

This software is sold by Hewlett-Packard Company

PAKs used: C or C-USER

Do you want the defaults for all options? [YES] No

HP I64VMS VMS V8.3 [Installed]

3

* Configuration options for this referenced product cannot
* be changed now because the product is already installed.
* (You can use PRODUCT RECONFIGURE later to change options.)

Copyright 2003, 2004-2007 Hewlett-Packard Development Company, L.P.

HP, the HP logo, Alpha and OpenVMS are trademarks of
Hewlett-Packard Development Company, L.P. in the U.S. and/or
other countries.

Confidential computer software. Valid license from HP
required for possession, use or copying. Consistent with
FAR 12.211 and 12.212, Commercial Computer Software, Computer
Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor’s
standard commercial license.

Multi_Version Support:
If you would like to set up your system to be able to run different
versions of the compiler then answer yes. The installation procedure will
then copy the previously installed C compiler and associated files along
side the new compiler in this kit with a suffix appended to the name that
corresponds to the version number. Users may then execute
DECC$SET_VERSION.COM to run an alternate version of the compiler
and DECC$SHOW_VERSIONS.COM to show available versions at anytime
after this installation.

Would you like to set up your system for running alternate versions of C? [NO] YES

Do you want to review the options? [NO]

Are you satisfied with these options? [YES]

Execution phase starting ...

The following product will be installed to destination:
HP I64VMS C V7.3-18 DISK$ICXXSYS:[VMS$COMMON.]

The following product will be removed from destination:
HP I64VMS C V7.2-22 DISK$ICXXSYS:[VMS$COMMON.]

Portion done: 0%...40%...50%...60%...70%...80%...90%...100%

The following product has been installed:
HP I64VMS C V7.3-18 Layered Product

The following product has been removed:
HP I64VMS C V7.2-22 Layered Product

%PCSI-I-IVPEXECUTE, executing test procedure for HP I64VMS C T7.3-18 ...
%PCSI-I-IVPSUCCESS, test procedure completed successfully

HP I64VMS C V7.3-18: HP C for OpenVMS Industry Standard

The release notes are located in the file SYS$HELP:CC.RELEASE_NOTES

for the text form and SYS$HELP:CC_RELEASE_NOTES.PS for the postscript form.

A startup file SYS$STARTUP:DECC$STARTUP.COM has been provided.

4

It contains commands which can be executed after the product install
procedure has been run and at startup to allow for the best compilation
performance. You may want to invoke this command file from your
system’s site-specific start up file. This command file does not
have to be invoked for correct operation of HP C.

3 Major Differences from Native Alpha Compiler
This native C compiler for I64 behaves very much like the current native Alpha
C compiler (V7.1) in terms of command line options, language features, etc.
Primary differences are in the support for #pragma linkage, builtin functions,
default floating-point representation and controls, and predefined macros.

3.1 #pragma linkage
The behavior of this pragma has been changed dramatically to help deal with
the large VMS code base that has used the pragma with the assumption
that the target platform would be Alpha, adhering to the OpenVMS Calling
Standard for Alpha (this pragma does not exist in the VAX compiler). Also,
new variants of the pragma have been added that help clarify the platform-
dependent nature of what the pragma specifies; these new pragmas can only
be used in code that is properly conditionalized to the target platform.

Because a mismatched linkage between caller and callee tends to cause
hard-to-diagnose problems at run-time, and because linkage mismatches
often occur when calling undocumented interfaces written in a low-level
language for which the user may not have source code, the compiler generates
a .vms_linkage section that assists the linker in diagnosing conflicts in linkage
specifications between function definitions and function calls across compilation
units.

3.1.1 Register Name Mapping for #pragma linkage
The #pragma linkage directive is inherently platform-dependent because it
uses the names of specific target-machine registers and specifies how they
are to be treated in a particular call interface. There may be both hardware
and calling-standard constraints that conflict with the behavior specified
by #pragma linkage. E.g. on Alpha, register R0 is specified in the calling
standard as the first function return value register; but on IA64, R0 is a read-
only zero-value register that cannot be assigned a different value (similar to
R31 on Alpha).

Like uses of the inline asm function on Alpha, uses of this pragma ought
to have been coded conditionally for the target system, to be reviewed and
modified or removed whenever porting to a different target.

5

However, in practice it was found that a significant amount of C code exists
that uses this pragma unconditionally (or conditionalized on #ifndef _ _VAX)
assuming Alpha register names and calling standard conventions. To reduce
the number of source code changes actually required to make this code
functional for IA64, it was decided that the pragma would be modified
for the IA64 target to accept Alpha register names and conventions, and
automatically map these whenever possible to specific IA64 registers according
to a correspondence established at the calling-standard level. At the same
time, a new version of the pragma, #pragma linkage_ia64 was implemented.
This pragma specifically interprets register names as IA64 hardware registers.

When HP C for I64 encounters the older #pragma linkage directive, by default
it will emit a SHOWMAPLINKAGE informational message showing the IA64-
specific form of the directive, #pragma linkage_ia64, with the IA64 register
names that replaced the Alpha register names. Ideally, over time each such
message should be examined to determine whether or not a special linkage
is necessary or desirable when the application is built for OpenVMS I64, and
source code changes made along one of the following lines:

• If the linkage is required to meet an externally-imposed interface, change
the source to use #pragma linkage_ia64 as shown by the SHOWMAPLINKAGE
message, under target-specific conditional compilation (e.g. #if _ _ia64).

• If the purpose of the linkage on Alpha is to improve performance or
debugging characteristics, and your source code contains the definition
of the called function as well as providing the declaration and linkage
used by all callers of the function, then consider whether the linkage as
it was mapped by the compiler to the IA64 registers is likely to provide a
significant benefit on IA64. Within a #if _ _ia64 conditional, you may want
to specify a different linkage_ia64 that would likely give more of a benefit
on IA64 than the default mapping from Alpha registers. Or you may decide
that there is no significant advantage to using a special linkage on IA64,
and specify the new keyword standard_linkage. (See Section 3.1.3)

3.1.1.1 Integer Register Mapping The following table shows the mapping
that HP C applies to the (Alpha) integer register names used in #pragma
linkage directives when they are encountered in HP C for OpenVMS I64.
Note that the six standard parameter registers on Alpha (R16-R21) are
mapped to the first six (of eight) standard parameter registers on IA64, which
happen to be stacked registers (see Section 3.1.2.1 for the naming convention
used for stacked registers). This mapping attempts to maximize source code
compatibility for linkages that may be used in existing C code for Alpha.

6

Alpha IA64
----- ----
R0 R8
R1 R9
R2 R28
R3 R3
R4 R4
R5 R5
R6 R6
R7 R7
R8 R26
R9 R27
R10 R10
R11 R11
R12 R30
R13 R31
R14 R20
R15 R21
R16 R32 (in parameter or result, else ignored)
R17 R33 (in parameter or result, else ignored)
R18 R34 (in parameter or result, else ignored)
R19 R35 (in parameter or result, else ignored)
R20 R36 (in parameter or result, else ignored)
R21 R37 (in parameter or result, else ignored)
R22 R22
R23 R23
R24 R24
R25 R25
R26 no mapping
R27 no mapping
R28 no mapping
R29 R29
R30 R12
R31 R0

7

3.1.1.2 Floating-point Register Mapping

Alpha IA64
----- ----
F0 F8
F1 F9
F2 F2
F3 F3
F4 F4
F5 F5
F6 F16
F7 F17
F8 F18
F9 F19
F10 F6
F11 F7
F12 F20
F13 F21
F14 F14
F15 F15
F16 F8
F17 F9
F18 F10
F19 F11
F20 F12
F21 F13
F22 F22
F23 F23
F24 F24
F25 F25
F26 F26
F27 F27
F28 F28
F29 F29
F30 F30
F31 F0

3.1.1.3 Diagnostics In some cases, the Alpha compiler silently ignores
linkage registers, e.g. if a standard parameter register like R16 is spec-
ified in a "preserved" option. When compiled for IA64, this will get a
MAPREGIGNORED informational, and the SHOWMAPLINKAGE output
may not be correct.

If there is no valid mapping to IA64 registers, the NOMAPPOSSIBLE warning
is given, and the linkage is ignored.

There are two special situations that can arise when floating-point registers
are specified in a linkage.

• Only IEEE-format values are passed in floating-point registers under the
OpenVMS Calling Standard for IA64. VAX-format values are passed in

8

integer registers. Therefore, if a compilation uses VAX-format floating
point (/G_FLOAT, /FLOAT=G_FLOAT, or /FLOAT=D_FLOAT command
line qualifiers), any linkage pragma that specifies floating-point registers
will produce an error (E-level diagnostic). Note that this includes the use
of floating-point registers in linkage options that do not involve passing
values, such as the preserved and notused options.

• The mapping of floating-point registers is many-to-one in two cases: Alpha
registers f0 and f16 both map to IA64 f8, and Alpha f1 and f17 both map
to IA64 f9. A valid Alpha linkage may well specify uses for both f0 and
f16, and/or both f1 and f17. Such a linkage cannot be mapped to IA64.
But because of the way this situation is detected, the MULTILINKREG
warning message that is produced can only identify the second occurrence
of an Alpha register that got mapped to the same IA64 register as some
previous Alpha register. The actual pair of Alpha registers in the source
are not identified, and so the message can be very confusing. E.g. an
option like preserved(f1,f17) will get a MULTILINKREG diagnostic saying
that f17 was specified more than once.

3.1.2 New #pragma linkage_<target>
There are two new variants of the linkage pragma, #pragma linkage_alpha
and #pragma linkage_ia64. These variants require that register names be
specified in terms of the target machine named in the pragma - the register
names will never be mapped to a different target. These pragmas produce
the UNAVAILPRAGMA informational and are ignored if encountered when
compiling code for a target other than the one specified.

3.1.2.1 Register names for #pragma linkage_ia64 For #pragma link-
age_ia64, valid registers for the preserved, nopreserve, notused, parameters,
and result options include integer registers R3 through R12 and R19 through
R31, and floating-point registers F2 through F31.

In addition, the parameters and result options also permit integer registers
R32 through R39 to be specified, according to the following convention.
On IA64, the first eight integer input/output slots are allocated to stacked
registers, and thus the calling routine refers to them using different names
than the called routine. The convention for naming these registers in either
the parameters or result option of a linkage_ia64 directive is always to use
the hardware names as they would be used within the CALLED routine:
R32 through R39. The compiler automatically compensates for the fact that
within the calling routine these same registers are designated using different
hardware names.

9

3.1.2.2 Register names for #pragma linkage_alpha The rules for allowed
uses of register names with #pragma linkage_alpha remain as documented for
#pragma linkage in the native Alpha compiler. It specifies Alpha register
names and does no mapping. The only difference between linkage and
linkage_alpha is the behavior when processed for a target machine other
than Alpha. For source code compatibility, a future version of the Alpha
compiler will add #pragma linkage_alpha, and recognize the new keyword
"standard_linkage". (See Section 3.1.3)

3.1.3 New keyword "standard_linkage"
All forms of the linkage directive now accept a new keyword "stan-
dard_linkage", which tells the compiler to use the normal linkage conventions
appropriate to the target platform, as specified in the calling standard. When
standard_linkage is specified, it must be the only option in the parenthesized
list following the linkage name. This can be useful to confine conditional
compilation to the pragmas that define linkages, without requiring the
corresponding use_linkage pragmas to be conditionally compiled as well.

Code that is written to use linkage pragmas as intended, treating them as
target-specific without implicit mapping, might have a form like this:

#if defined(__alpha)
#pragma linkage_alpha special1 = (__preserved(__r1,__r2))
#elif defined(__ia64)
#pragma linkage_ia64 special1 = (__preserved(__r9,__r28))
#else
#pragma message ("unknown target, assuming standard linkage")
#pragma linkage special1 = (standard_linkage)
#endif

Code compiled for IA64 that deliberately relies on the register mapping
performed by #pragma linkage should either ignore the SHOWMAPLINKAGE
informational, or disable it (#pragma message disable(SHOWMAPLINKAGE))

3.2 Builtin Functions
3.2.1 Alpha compatibility

The philosophy for the builtin functions is that most any existing uses of Alpha
builtins should continue to work under IA64 where possible, but that the
compiler will issue diagnostics where it would be preferable to use a different
builtin for IA64. For this reason, the builtins.h header has not removed
or conditionalized out any of the Alpha declarations. Instead, it contains
comments noting which ones are not available or not the preferred form for
IA64. Furthermore, a significant number of the _ _PAL builtins for Alpha
have been implemented as system services on OpenVMS I64 instead of actual

10

compiler builtins, but using an implementation technique that is transparent
to source code that calls the builtins on Alpha.

Specific changes:

• There is no support for the asm/fasm/dasm intrinsics (actually declared
in <c_asm.h>), or any similar mechanism to insert arbitrary sequences
of machine instructions into the generated code. Generation of specific
machine instructions can only be accomplished using the builtins declared
in builtins.h, or by calling functions written in assembly language.

• The functionality provided by the special-case treatment of R26 in an Alpha
asm, as in asm("MOV R26,R0"), is provided by a new builtin function:
_ _int64 _ _RETURN_ADDRESS(void). It will also be supported in a future
version of HP C for Alpha. The builtin produces the address to which the
function containing the builtin call will return (the value of R26 on entry to
the function on Alpha, the value of B0 on entry to the function on IA64). It
cannot be used within a function specified to use non-standard linkage, or
in a varargs function.

• There is no compiler-based support for any of the _ _PAL calls other
than the 24 queue-manipulation builtins. The queue-manipulation
builtins generate calls to new VMS system services SYS$<name>,
where <name> is the name of the builtin with the leading underscores
removed. Any other _ _PAL calls declared in builtins.h are actually
supported through macros defined in the header pal_builtins.h provided
in sys$library:sys$starlet_c.tlb. Note that builtins.h contains a
#include <pal_builtins.h> at the end. Typically, a macro in pal_builtins.h
effectively hides a declaration in builtins.h, and transforms an
invocation of an Alpha builtin into a call to a system service (declared
in pal_services.h) that will perform the equivalent function on OpenVMS
I64. Two notable exceptions are _ _PAL_GENTRAP and _ _PAL_BUGCHK, which
instead invoke the IA64-specific compiler builtin _ _break2().

• There is no support for the various floating-point builtins used by the math
library (e.g. operations with chopped rounding and conversions).

• Most builtins that take a retry count provoke a warning, and the compiler
evaluates the count for possible side effects and then ignores it, invoking
the same function without a retry count. This is because the retry behavior
allowed by Alpha load-locked/store-conditional sequences does not exist on
the IA64 architecture. The "exceptions" to this are _ _LOCK_LONG_RETRY
and _ _ACQUIRE_SEM_LONG_RETRY, because in these cases the retry behavior
involves comparisons of data values, not just load-locked/store-conditional.

11

• The _ _CMP_STORE_LONG and _ _CMP_STORE_QUAD builtins produce either
a warning or an error, depending on whether or not the compiler can
determine that the source and destination addresses are identical. If the
addresses can be seen to be identical, the compiler treats it as the new
_ _CMP_SWAP_ form and issues a warning. Otherwise it is an error. The
_ _CMP_SWAP_ forms are not supported in V6.5 of Compaq C for Alpha; but
they are intended to be supported in a future update of HP C for Alpha.

• Note that the comments in builtins.h reflect only what is explicitly
present in that header itself, and in the compiler implementation. The
user should also consult the content and comments in pal_builtins.h
to determine more accurately what functionality is effectively provided
by including builtins.h. E.g. if a program explicitly declares one of the
Alpha builtins and invokes it without having included builtins.h, the
compiler may issue the BIFNOTAVAIL error regardless of whether or
not the functionality might be available through a system service. If the
compilation does include builtins.h, and BIFNOTAVAIL is issued, then
most likely there is no support for that functionality; but another (remote)
possibility is that there is a problem in the version of pal_builtins.h that
is being included by builtins.h.

3.2.2 IA64 specific
The header file contains a section at the top conditionalized just to _ _ia64
with all of the planned support for IA64-specific builtins. This includes
macro definitions for all of the registers that can be specified to the
_ _getReg/_ _setReg/_ _getIndReg/_ _setIndReg builtins. Parameters that are
const-qualified require an argument that is a compile-time constant.

12

/* Intel-compatible */
unsigned __int64 __getReg(const int __whichReg);
void __setReg(const int __whichReg,

unsigned __int64 __value);
unsigned __int64 __getIndReg(const int __whichIndReg,

__int64 __index);
void __setIndReg(const int __whichIndReg,

__int64 __index,
unsigned __int64 __value);

void __break(const int __break_arg); /* Native IA64 arg */
void __dsrlz(void);
void __fc(__int64 __address);
void __fwb(void);
void __invalat(void);
void __invala(void); /* alternate spelling of __invalat */
void __isrlz(void);
void __itcd(__int64 __address);
void __itci(__int64 __address);
void __itrd(__int64 __whichTransReg, __int64 __address);
void __itri(__int64 __whichTransReg, __int64 __address);
void __ptce(__int64 __address);
void __ptcl(__int64 __address, __int64 __pagesz);
void __ptcg(__int64 __address, __int64 __pagesz);
void __ptcga(__int64 __address, __int64 __pagesz);
void __ptri(__int64 __address, __int64 __pagesz);
void __ptrd(__int64 __address, __int64 __pagesz);
void __rsm(const int __mask);
void __rum(const int __mask);
void __ssm(const int __mask);
void __sum(const int __mask);
void __synci(void);
__int64 /*address*/ __thash(__int64 __address);
__int64 /*address*/ __ttag(__int64 __address);

/* These Intel _Interlocked intrinsics will be added to Alpha. */
unsigned __int64 _InterlockedCompareExchange_acq(

unsigned int *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

unsigned __int64 _InterlockedCompareExchange64_acq(
unsigned __int64 *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

unsigned __int64 _InterlockedCompareExchange_rel(
unsigned int *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

unsigned __int64 _InterlockedCompareExchange64_rel(
unsigned __int64 *__Destination,
unsigned __int64 __Newval,
unsigned __int64 __Comparand);

13

/* GEM-added builtins */

void __break2(__Integer_Constant __break_code,
unsigned __int64 __r17_value);

void __flushrs(void);
void __loadrs(void);
int __prober(__int64 __address, unsigned int __mode);
int __probew(__int64 __address, unsigned int __mode);
unsigned int __tak(__int64 __address);
__int64 /*address*/ __tpa(__int64 __address);
/*
** The following were added to the GEM compiler for IA64, but will
** also be implemented for Alpha.
**
** Nota Bene:
** _Interlocked* built-ins return the old value and have the
** newval and comparand arguments in a different order than
** __CMP_SWAP* built-ins that return the status (1 or 0).
** Forms without trailing _ACQ or _REL are equivalent to
** the _ACQ form. On Alpha, _ACQ generates MB after the swap,
** _REL generates MB before the swap.
*/
int __CMP_SWAP_LONG(volatile void *__addr,

int __comparand,
int __newval);

int __CMP_SWAP_QUAD(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

int __CMP_SWAP_LONG_ACQ(volatile void *__addr,
int __comparand,
int __newval);

int __CMP_SWAP_QUAD_ACQ(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

int __CMP_SWAP_LONG_REL(volatile void *__addr,
int __comparand,
int __newval);

int __CMP_SWAP_QUAD_REL(volatile void *__addr,
__int64 __comparand,
__int64 __newval);

/*
** Produce the value of R26 (Alpha) or B0 (IA64) on entry to the
** function containing a call to this builtin. Cannot be invoked
** from a function with non-standard linkage.
*/
__int64 __RETURN_ADDRESS(void);

14

3.3 Changed Floating Point Defaults and Controls
3.3.1 I64 Default: /FLOAT=IEEE_FLOAT/IEEE=DENORM

The native Alpha compiler defaults to /FLOAT=G_FLOAT. But on IA64, there
is no hardware support for floating point representations other than IEEE. The
VAX floating point formats are supported in the compiler by generating run-
time code to convert to IEEE format in order to perform arithmetic operations,
and then convert the IEEE result back to the appropriate VAX format. This
imposes additional run-time overhead, and some loss of accuracy compared
to performing the operations in hardware on the Alpha (and VAX). The
software support for the VAX formats is an important functional compatibility
requirement for certain applications that need to deal with on-disk binary
floating-point data, but its use should not be encouraged by letting it remain
the default. This change is similar to the change in default from /FLOAT=D_
FLOAT on VAX to /FLOAT=G_FLOAT on Alpha.

Note also that the default /IEEE_MODE has changed from FAST to DENORM_
RESULTS. This means that by default, floating point operations may silently
generate values that print as Infinity or Nan (the industry-standard behavior)
instead of issuing a fatal run-time error as they would using VAX format float
or /IEEE_MODE=FAST. Also, the smallest-magnitude non-zero value in this
mode is much smaller because results are permitted to enter the denormal
range instead of being flushed to zero as soon as the value is too small to
represent with normalization.

3.3.2 Semantics of /IEEE_MODE qualifier
On Alpha, the /IEEE_MODE qualifier generally has its greatest effect on
the generated code of a compilation. When calls are made between functions
compiled with different /IEEE_MODE qualifiers, each function produces the
/IEEE_MODE behavior with which it was compiled. On I64, the /IEEE_MODE
qualifier primarily affects only the setting of a hardware register at program
startup. In general, the /IEEE_MODE behavior for a given function will be
controlled by the /IEEE_MODE option that was specified on the compilation
that produced the main program: the startup code for the main program sets
the hardware register according the command line qualifiers used to compile
the main program.

When applied to a compilation that does not contain a main program, the
/IEEE_MODE qualifier does have some effect: it may affect the evaluation
of floating-point constant expressions, and it is used to set the EXCEPTION_
MODE used by the math library for calls from that compilation. But the
qualifier will have no effect on the exceptional behavior of floating-point
calculations generated as inline code for that compilation. Therefore, if
floating point exceptional behavior is important to an application, all of

15

its compilations, including the one containing the main program, should be
compiled with the same /IEEE_MODE setting.

Note that even on Alpha, the particular setting of /IEEE_MODE=UNDERFLOW_
TO_ZERO has this characteristic: its primary effect requires the setting of a
run-time status register, and so it needs to be specified on the compilation
containing the main program in order to be effective in other compilations.

3.4 Predefined Macros
The compiler predefines a number of macros, with the same meanings as in the
native Alpha compiler, except that it does not predefine any of the macros that
specify the Alpha architecture, but instead it predefines the macros _ _ia64 and
_ _ia64_ _, as is the practice in the Intel and gcc compilers for IA64. Also note
that the change in floating-point representation from G_FLOAT to IEEE is
reflected in the macros that are predefined by default. In particular, _IEEE_FP
is now set by default (as it is on Alpha for /float=ieee/ieee=denorm).

We note that some users have tried defining the macro _ _ALPHA explicity
with /define or in a header file as a quick "hack" to deal with source code
conditionals that were written to assume that if _ _ALPHA is not defined then
the target must be a VAX. Doing this will cause the CRTL headers and other
VMS headers to take the wrong path for IA64 - you must not define any of the
Alpha architecture predefined macros when using this compiler.

4 Restrictions when using V7.3

• The patch kit VMS821I_LIBOTS-V0100 is required when running this
compiler on OpenVMS Integrity 8.2-1 or when running applications on
OpenVMS Integrity 8.2-1 that are built with HP C V7.3 for OpenVMS
Integrity Servers. The bug fix contained in this OpenVMS Integrity patch
kit has already been incorporated into OpenVMS Integrity 8.3, so the patch
kit is not needed when running on OpenVMS Integrity 8.3 or higher.

5 Enhancements, Changes, and Problems Corrected in V7.3
HP C V7.3 is primarily a bug-fix release of the compiler. One major
enhancement that has been added, however, is multiple version support.

The following are compiler enhancements and problems fixed in this version:

16

• Version 7.3 adds optional support for having multiple versions of the
C compiler on your system. It works by appending an ident name to a
previously installed compiler and saving it alongside the new compiler from
this kit. Users on your system can then execute the sys$system:decc$set_
version.com and sys$system:decc$show_versions.com command procedures
to select the desired compiler for a given process and to view the list of
available compiler versions.

To set this up, have your system administrator run the installation
procedure, answering NO to the question about default options:

Do you want the defaults for all options? [YES] NO <RET>

Then answering YES to the question about making alternate compilers
available:

Would you like to set up your system for running alternate versions of C? [NO] YES <RET>

Users can then execute the decc$set_version.com command procedure with
an argument:

$ @sys$system:decc$set_version V7.2-022

Or without an argument:

$ @sys$system:decc$set_version

The following HP C compiler(s) are available in SYS$COMMON:[SYSEXE]

Filename Version Defaults
--
DECC$COMPILER.EXE V7.3-018 System Default
DECC$COMPILER_S07_01-013.EXE S7.1-013
DECC$COMPILER_T07_03-017.EXE V7.3-018
DECC$COMPILER_V07_01-011.EXE V7.1-011
DECC$COMPILER_V07_02-001.EXE V7.2-001
DECC$COMPILER_V07_02-022.EXE V7.2-022 Process Default

Enter Version number or SYSTEM: V7.3-018

Notice that when decc$show_versions.com is executed without an
argument, it displays a list of possible compilers and prompts you for
a version number. Also notice that you can revert to the installed compiler
by selecting SYSTEM as the version number.

The decc$set_version.com command procedure sets up the logicals
DECC$COMPILER and DECC$COMPILER_MSG to point to the location
of the target compiler and its message file. In addition, it issues a SET
command to select the appropriate CDL file to select the correct set
of qualifiers for the specified compiler version. Please remember that
SET commands are not inherited by subprocesses. Make sure that

17

all subprocesses reissue the necessary decc$set_version.com command
procedure.

For a sample installation with multi-version support, please see the
installation section.

• A decc$startup.com file was added to the PCSI product install procedure.
It contains commands which can be executed after the product install
procedure has been run and at startup to allow for the best compilation
performance. You may want to invoke this command file from your
system’s site-specific start up file. This command file does not have to be
invoked for correct operation of HP C.

• On rare occassions, previous versions of the compiler could generate code
which caused alignment fault traps at runtime when dereferencing a
pointer to a struct with longword alignment. This problem has been fixed.

• In rare cases, bad code could be generated for some instances field copies,
when compiling /OPT.

• In rare cases, bad code could be generated for some shift operations when
compiled /NOOPT. The problem was not evident when compiling /OPT.

• A new option to the /POINTER_SIZE=LONG qualifier is available. When
/POINTER_SIZE=LONG=ARGV is specified, the argv argument to main
will be comprised of long pointers instead of the short pointers. This can
make using long pointers easier as the pointer size of argv will match the
default pointer size for the compilation.

NOTE: This is all IPF only. This support has not been added to the Alpha
compiler.

• The compiler now gives a RETPARMCONST error diagnostic if a constant
is used as the argument to a builtin function parameter that specifies
the address of a variable in which to store a result value (e.g. the second
parameter of _ _PAL_INSQHIL). This is because the address of a variable
is never a compile-time constant. Previously, specifying a constant could
sometimes cause the compiler to crash.

18

• The compiler now diagnoses the use of excessively large integer values
in #line directives. Under C99, an implementation is only required to
accept values as large as 2147483647. Larger values now produce a
LINETOOLARGE warning. An optional XTRALARGE informational can
be requested to report values greater than 32767, which was the C90
requirement.

• The compiler no longer issues spurious warnings for constant expressions
within the unevaluated part of a short-circuited constant expression
involving the " | | " or "&&" operators. Previously, only the ternary "?:"
operator in a constant expression suppressed warnings in its unevaluated
operand.

• The optional FALLOFFEND diagnostic is now correctly detected and
reported in more cases, particulary within functions that are inlined.
Programs that previously compiled cleanly with this diagnostic enabled
may now report the diagnostic.

• The evaluation of compound literals with side effects could sometimes
cause those side effects to occur more than once, depending on the way
in which the compound literal was used. For example, when used as an
argument to printf, side effects in compound literal arguments could occur
three times.

• Some optimization problems that could cause bad code to be generated
have been corrected.

• The V7.2-001 release changed the definition of the _ _STDC_ _ predefined
macro to have a value of 0 when compiled with /STANDARD=RELAXED.
This was a change from earlier releases when the value was 1. This
change was made because the C Standard defines _ _STDC_ _ to be 1
in a conforming implementation, but using /STANDARD=RELAXED
makes the compiler non-conforming. After product release, we found
that this change caused certain OpenVMS headers to fail. To resolve the
issue, this compiler update defines _ _STDC_ _ to have a value of 2 when
/STANDARD=RELAXED is specified.

19

• In certain cases the compiler could crash with the following:

Code cell integrity check:
Operand literal value out of range:

This problem has been corrected.

• Bad code could be generated for certain field copies, when compiling /OPT.

• Bad code could be generated for certain shift operations when compiled
/NOOPT. The problem was not evident when compiling /OPT.

6 Enhancements, Changes, and Problems Corrected in
Version 7.2

HP C Version 7.2 is a bug-fix release of the compiler. The following problems
are fixed in this version:

• The use of excessively long argument lists (producing the compile-time
informational message ARGLISTR255), could in some cases cause the
compiler to ACCVIO when the /TIE qualifier was specified. While a
compilation that gets one or more ARGLISTR255 diagnostics should no
longer access violate when /TIE is specified, if any of the call sites that get
the diagnostic end up crossing the boundary between native and translated
images, such calls will fail at run-time because the run-time support for
calls between native and translated images relies on accurate contents of
the argument information register. The ARGLISTR255 diagnostic means
that the call requires an argument count value greater than 255, which
cannot be represented in the argument information register.

Also a different, unrelated, situation where /TIE could trigger a compiler
assertion failure was fixed.

• Added _ _fci() builtin function to generate the fc.i instruction. The
declaration will be added to <builtins.h> in future C RTL headers supplied
on the base system. It can be used with an explicit declaration of "extern
void _ _fci(_ _int64);".

20

• A new option to the /POINTER_SIZE=LONG qualifier is available. When
/POINTER_SIZE=LONG=ARGV is specified, the argv argument to main is
comprised of long pointers instead of short pointers. This can make using
long pointers easier because the pointer size of argv will match the default
pointer size for the compilation.

• #pragma module module-name [module-ident | "module-ident"]

For consistency, a module-name whether explicit or default considers the
/NAMES qualifier and ignores #pragma names.

if the module-name is too long:

• A warning is generated if /NAMES=TRUNCATED is specified.

• There is no warning if /NAMES=SHORTEN is specified.

A shortened external name incorporates all the characters in the
original name. If two external names differ by as little as one
character, their shortened external names will be different.

If the optional module-ident or "module-ident" is too long a warning is
generated. A #pragma module directive containing a "module-ident" that is
too long is not ignored.

The default module-name is the filename of the first source file. The
default module-ident is "V1.0" They are treated as if they were specified by
a #pragma module directive.

If the module-name is longer than 31 characters:

• and /NAMES=TRUNCATE is specified, truncate to 31 characters, or
less if the 31st character is within a Universal Character Name.

• and /NAMES=SHORTENED is specified, shorten the module-name to
31 characters using the same special encoding as other external names.
Lowercase characters in the module-name are converted to upper case
only if /NAMES=UPPERCASE is specified.

A module-ident that is longer than 31 characters is treated as if
/NAMES=(TRUNCATED,AS_IS) were applied, truncating it to 31
characters, or less if the 31st character is within a Universal Character
Name.

The default module-name comes from the source file name which always
appears in the listing header along with a blank module-name and ident.
The module-name (and ident) appear in the listing header only if they come
from a #pragma module directive or differ from the default. The heading
and sub-heading fields of the listing header are not affected.

21

• In some cases, compiling with the /TIE command line qualifier would
cause an internal compiler error. This failure was triggered by source code
containing a function call with both of the following characteristics:

1. One of the arguments was of a struct type, and its position and size
were such that part of the struct value was passed in a register and
the rest of the value passed on the stack.

2. That argument was not the last one in the call.

• In some cases, when a #include-file contained a function definition as its
first declaration, compiler-generated traceback information was incorrect.
If a traceback was generated at run-time, the traceback itself could report
the following error:

Error: file number is out of range
TRACEBACK - Exception occurred during traceback processing

• In some cases, optimized code using the memmove function produced
incorrect results when there was overlap between the input and output
buffers and the destination was not aligned to a quadword boundary.
For example, copying bytes 0-2 of a quadword into bytes 1-3 of the same
quadword.

• In some cases, incorrect code could be generated for unaligned access
to an unsigned 32-bit longword value, if that value was used in certain
operations such as an integer divide.

• The machine_code listing for certain instructions that both read and
write a memory location (such as fetchadd) incorrectly showed the read
and written operand on the left-hand side of the "=" sign instead of the
right-hand side. These kinds of instructions are usually generated only by
calls to builtin functions. Not a code generation problem, strictly a listing
problem.

• This version of the compiler contains support for generation of a new
section type in the object file that improves the ability to identify the
source code that corresponds to a shortened CRC’d external name.
Future versions of the OpenVMS linker will use this section to emit more
understandable error messages when these symbols are undefined and will
be able to generate a special section in the linker map file showing the
CRC’d name and its corresponding original name.

22

7 Known Problems in V7.3

• The compiler might emit an erroneous BADANSIALIASn message.

In some situations the compiler’s loop unrolling optimization can generate
memory accesses in the code stream that never actually execute at
run-time, but that would violate the ANSI aliasing rules if they were
to execute. In such a situation, the compiler might emit an erroneous
BADANSIALIASn message, where n is a number or is omitted.

If the violations take place only in machine instructions that will not
execute at run-time, these messages can be safely ignored.

To determine whether or not particular instances of a BADANSIALIASn
message are erroneous, recompile the module with the /OPT=3DUNROLL=3D1
qualifier. Any BADANSIALIASn messages that disappear under that
qualifier can be safely ignored, so you may want to add appropriate
#pragma message directives to the source, localized to the specific source
lines known to be safe. This is preferable to disabling the message for
the whole compilation, since in all other cases the message indicates a
real potential for code generation that will not work as intended. And
this is generally preferable to disabling the ANSI_ALIAS or loop unrolling
optimizations, since that would likely degrade performance, although
the amount of degradation is not predictable, and in unusual cases it
might even improve performance. As always when making changes to
performance-critical code, it is best to measure the impact.

• If the /FIRST_INCLUDE qualifier is used to specify more than one
header-file, and the first logical source line of the primary source file spans
physical lines (i.e. it either begins a C-style delimited comment that is
not completed on that line, or the last character before the end-of-line is
a backslash line-continuation character), then the compiler will give an
internal error. Workarounds are either to make sure the first logical line of
the primary source file does not span physical lines (e.g. make it a blank
line), or to avoid specifying more than one header in the /FIRST_INCLUDE
qualifier (e.g. use a single /FIRST_INCLUDE header that #includes all of
the headers you want to precede the first line of the primary source file).

• This version of the C compiler contains support for a new section type
which maps CRC’d external names to their original unencoded form. This
will permit future linkers to emit more understandable messages for
encoded external names. However, the current version of ANAL/OBJECT

23

on OpenVMS 8.2-1 and earlier will issue an error mesage %ANALYZE-
E-ELF_UNKNWNSEC, Unrecognized Elf Section Type 60000007 for C
modules containing long names that are compiled /names=shortened.
Please ignore this message.

8 Reporting Problems
Please report problems or offer feedback using the mechanisms specified in the
"Read Before Installing" document.

Internal users may report problems in the notes conference TURRIS::DECC or
TURRIS::DECC_BUGS

24

